Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
Uniformlycontinuouscomposition...
7
Remark1.IffRVł(IjX),thenfiscontinuousinI.Itisaconse-
quenceofLemma2.1(d)inChistyakov[3].
Wewillneedthefollowingpropertyofpł.
Lemma1(cf.Chistyakov,[4],Lemma3.4).LetoFandf
RV
ł(IjX).
IfT>0,thenVł(f/T)1ifandonlyifpł(f)T.
3.Mainresult
ForasetCXweput
RVł(IjC):1{fRVł(IjX):f(I)C}.
ByA(XjY)denotethespaceofalladditivemappingsA:XY,and
byL(XjY)denotethespaceofalllinearmappingsfromXintoY.
Themainresultreadsasfollows.
Theorem1.LetI1[Ijb]andojwF.Supposethat(Xj|·|)isa
linearrealnormedspace,(Yj|·|)isarealBanachspace,CXisaclosed
andconvexset,andh:I×CYisafunction.Ifthecompositionoperator
Hgivenby
H(f)(t):1h(tjf(t))j
tIjfXIj
mapsthesetRVł(IjC)intoRVψ(IjY)andHisuniformlycontinuous,then
therearethefunctionsA:IA(XjY)andBRVψ(IjY)suchthat
h(tjx)1A(t)x+B(t)j
tIjxC.
Moreover,if0CandInt(C)/1,thenA:IL(XjY)andB
RVψ(IjY).
Proof.ForeveryxC,theconstantfunctionI3tl→xbelongsto
RVł(IjC).SincetheNemytskiioperatorHmapsthespaceRVł(IjC)into
RVψ(IjY),itfollowsthatforeveryxCthefunctionh(·jx)belongsto
RVψ(IjY).
TheuniformcontinuityofHonRVł(IjC)impliesthat
"H(f1)H(f2)"ψω("f1f2"ł)forf1jf2RVł(IjC)j
whereω:R+R+isthemoduluscontinuityofH,i.e.
ω(ρ):1sup{"H(f1)H(f2)"ψ:"f1f2"łρ;f1jf2RVł(IjC)}
forρ>0.