Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
10
TianranChen,Tien-YienLi
wheretheintegermatrixAMn×m(Z),havingcolumnsα(1)β(1),...,α(m)
β
(m),representstheexponentsappearedintheLaurentmonomialsandthe
vectorb=(c1,2/c1,1,...,cm,2/cm,1)(C)mcollectsallthecoefficients.
Inthisarticle,weoftentake(3)tobethestandardformofaLaurentbino-
mialsystem,withwhichonemustbearinmindthatforAMn×m(Z),n
representsthenumberofvariablesandmrepresentsthenumberofbinomial
equationsinthesystem.
3.SolutionsetsofLaurentbinomialsystems
Inthissection,weoutlinethestructuraltheoryofthesolutionsetofa
Laurentbinomialsystemaswellasthemeansbywhichonecouldstudythe
importantpropertiesofthesolutionsetwithregardtoitsdimension,number
ofcomponents,smoothness,degree,andglobalparametrizations.Thedetails
ofamoregeneraltheorycanbefoundin[9],[12],[15],and[34].
Animportanttoolinunderstandingthestructureofthesolutionsetof
aLaurentbinomialsystemxA=b(initsstandardform(3))istheSmith
NormalFormoftheexponentmatrixA:Itisknownthatforintegermatrix
A,thereareunimodularsquarematricesPMn×n(Z)andQMm×m(Z)
suchthat
r
mr
PAQ=
(
|
|
|
|
|
|
|
|
|
\
d1
...
dr
0
...
0
)
\
|
|
|
|
|
|
|
|
|
r
nr
(4)
withnonzerointegersd1|d2|···|drforr=rankA,uniqueuptothesigns.
Here,a|bmeansadividesbasusual.ThisdecompositionofthematrixA
providesimportantgeometricinformationaboutthesolutionsetofxA=b
in(C)nsummarizedinthefollowingproposition:
Proposition1.IfthesolutionsetofxA=bin(C)nisnotempty,then
itconsistsofafinitenumberofconnectedcomponents.Furthermore,
1.thenumberofsolutioncomponentsisexactly|
|Π
r
j=1dj
|
|;
2.eachsolutioncomponenthascodimensionequalsrankA=r;and
3.eachsolutioncomponentissmooth.