Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
Solutionstosystemsofbinomialequations
9
Sincetheexponentsheremaybenegative,itisnaturaltorequireeachxżto
benonzero,i.e.,xżC=C\{0}foreachź=1,...,n.Sothevariablestake
valuesin(C)nwhichhasanaturalgroupstructuregivenbythecomponent-
wisemultiplication
(x1,...,xn)(g1,...,gn):=(x1·g1,...,xn·gn).
Thosenotationsareparticularlyconvenient,sincethefamiliaridentitiessuch
as
(2)
(xy)A=xAyAand(xA)B=xAB
stillhold.ALaurentpolynomialisalinearcombinationofLaurentmono-
mials,i.e.,anexpressionoftheformΣ
m
k=1ckxα
(k)
whereeachckCand
α(k)Zn.ThesetofallsuchLaurentpolynomialsnaturallyformsaringun-
dertheusualpolynomialadditionandmultiplication.ALaurentbinomial
isaLaurentpolynomialhavingexactlytwotermswithnonzerocoefficients1,
i.e.,itisanexpressionoftheformc1xα+c2xβforsomec1,c2Cand
α,βZn.Eventhoughmuchoftheestablishedtheoryiswidelyapplicable
toLaurentbinomialsoverarbitraryalgebraicallyclosedfields,inthisarticle,
however,ourattentionisrestrictedtothosewithcomplexcoefficients.The
focushereissolvingsystemsofLaurentbinomialsequations,orsimplyLau-
rentbinomialsystems,over(C)n.Moreformally,givenexponentvectors
α(1),...,α(m),β(1),...,β(m)Znandthecoefficientscż,jC,thegoalis
todescribethesetofallx(C)nthatsatisfiesthesystemofequations
(
I
I
4
I
I
l
c1,1xα
cm,1xα
(1)
(m)
+c1,2xβ
+cm,2xβ
(1)
(m)
=0
.
.
.
=0.
Concerningthesolutionsetin(C)n,thissystemisclearlyequivalentto
(xα
(1)1β(1),...,xα
(m)1β(m))=(c
1,2/c1,1,...,cm,2/cm,1).
Withmorecompact“matrixexponent”notationsin(1),thissystemcansim-
plybewrittenas
(3)
xA=b
1AnalternativedefinitionforaLaurentbinomialthatisoftenusedis“aLaurentpoly-
nomialwithatmosttwotermswithnonzerocoefficients”.Thisdefinitionwouldinclude
Laurentmonomialsasaspecialcase.However,sincemonomialequationsaretrivialtosolve
fromapurelycomputationalpointofview,herewechoosetousethemorestrictdefinition.