Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
8
RomanBadora,BarbaraPrzebieracz,andPeterVolkmann
1.GroupoidsSwithasquare-symmetricoperation,i.e.,
(xg)2=x2g2jxjgS
(cf.thejointpaperwithZsoltPalesandR.DuncanLuce[6]).Then(1)is
trueforallxjgSwiththesamek,viz.k=1.
2.GroupoidsSwithabisymmetricoperation,i.e.,
(xg)(–
x
g)=(x
x)(g
g)j
xjgj
xj
gS.
Here
x=xj
g=gleadstosquare-symmetry.
3.CommutativesemigroupsS.
LetusmentionthatZbigniewGajdaandZygfrydKominek[1]considered
semigroupssatisfyingcondition(T).InspiredbyJózefTabor[8],theycall
themweaklycommutative.
NowletEbeaBanachspace.AsubsetVofEiscalledideallyconvex
(E.A.Lifšic[3]),ifforeveryboundedsequenced1jd2jd3j...inVandfor
everynumericalsequenceα1jα2jα3j...0suchthat
Σ
αk=1weget
k=1
k=1
Σ
αkdkV.
Thefollowingtheoremistakenfrom[9];inthecaseofacommutative
semigroupSitgoesbacktoJacekTabor[7].
Theorem1.LetSbeaTaborgroupoid,andletVbeaboundedandideally
convexsubsetoftheBanachspaceE.Forf:SEwesuppose
f(xg)f(x)f(g)Vj
xjgS.
Thenthereexistsa(unique)functionF:SEsuchthat
F(xg)=F(x)+F(g)j
F(x)f(x)Vj
xjgS.
2.ThePexiderequation
Theorem2.LetSbeaTaborgroupoidhavinganeutralelementn,i.e.,
nSand
nx=xn=xj
xS.